Introduction

The thyroid gland develops from the floor of the primitive pharynx and begins to synthesize and secrete T4 by 17 days of gestation [27,28]. The most numerous cell population in the gland is the thyroid follicular cells which are responsible of secretion of ioded tyrosine derived hormones which exert important effects on development, growth, and metabolism [29,41]. Some of their most prominent effects occur during foetal development and early childhood while several organs undergo significant morphological and physiological changes. First, it has been thought that the male gonad was unresponsive to the thyroid hormones [2] so the delayed gonadal maturation observed in hypothyroid experimental animals and man has been attributed to a reduction of gonadotrophins secretion [38,40]. Since then in several studies, a hypothyroid state was induced by thyroïdectomy [1,4,9,10] or by administration of anti-thyroid drugs [1,11-15,17-19,22,24,30-31,33-34,38-39] and the effects on testicular structure or/and function have been evaluated. Likewise, in most of these studies the hypothyroidism was induced after birth and little has been known about effects of pre-natal transient hypothyroidism on the testis development [17]. In this study, we aimed to compare morphological variations and hormonal status in adult rats after transient hypothyroidism induced by PTU during gestation and lactation periods.

Materials and methods

Animals and induction of hypothyroidism. Wistar female rats were made pregnant and kept in a animal room with a controlled temperature (20-25°C) and under natural photoperiod with pelleted commercial chow ad libitum. Experiments were conducted according to recommendations edicted in the Guide to the Care and Use of Experimental Animals. Prenatal treatment was started 1 day post coitum and stopped at birth, by giving pregnant rats a drinking water containing 0.025% (w:v) 6-propyl-2-thiouracil (PTU; Sigma Chemical Co., St. Louis, MO) and 0.075% saccharine-aspartam to mask the bitter taste of PTU (PTU), control pregnant rats received water laced with 0.075% saccharine-aspartam (C). After birth, to render newborns hypothyroid, lactating rats were provided with drinking water containing 0.025% PTU and 0.075% sweetener (PTU). Control mothers received sweetened water (C). Treatment has been maintained to day 21. Treated and control litters were followed up until adulthood and decapitated.
Blood was collected on 2% EDTA, plasma were separated by centrifugation and stored at -20°C for hormones measurements.

Hormone measurements. Plasma levels of total androgens were evaluated by Radio Immunoassay method after Cyclohexane/Ethylacetate (V/V) extraction, all samples were assayed in duplicate in a single RIA run using [1,2,6,7] 3H testosterone (Amersham, GB) and an anti-testosterone rabbit serum antibody produced in laboratory. Plasma free triiodothyronine (FT₃) and free thyroxin (FT₄) were measured using a single antibody direct radioimmunoassay kits (Immunotech, France, FT₃: ref. IM1579; FT₄: ref. IM1363).

Histology. Testes of PTU treated rats and controls were fixed in an aqueous fixative, embedded in paraffin and 5 m sections were stained with Masson's trichrome dyes solutions and studied in a Zeiss photomicroscope equipped with ocular grid.

Statistical analysis. Body and testis weights and hormone measurements are presented as mean ± SEM. Two-way analyses of variance were used for statistical evaluation of data using Student's t test. The level of significance was taken as p < 0.05.

Results

Body weight (BW)

Body weight of prenatal PTU treated animals was significantly lower the two first weeks after birth (respectively 3.99 ± 0.36 g vs. 7.5 ± 0.46 g and 7.5 ± 0.29 g vs. 13.07 ± 0.43 g; p< 0.001). It evolved similarly until 60 dpp and became significantly lower over the rest of experiment (Fig. 1). Body weight of postnatal PTU treated rats evolved parallel to control's one until adult age but remained significantly lower from the fourth week onwards. The mean weights of 9 and 14-week-old rats being 89.68 ± 5.43 g vs. 170.89 ± 5.22 g (p< 0.001) and 173.26 ± 9.27 g vs. 225.44 ± 7.76 g (p< 0.01; Fig. 2).

Testis weight

Testis weight in prenatal PTU treated rats was weakly decreased, respectively 6% and 4%, at 60 and 100 days after birth.
of age (p < 0.05 and p > 0.05). An important decrease (61%) was noted in postnatal PTU treated rats when compared with control rats at 60 days of age (p < 0.05). At 100 days of age, testis weight in this PTU treated group was 6% greater (1.665 ± 0.034 g vs. 1.577 ± 0.023 g; p < 0.05) despite the 23% decrease in body weight (Table 1).

Hormonal levels

Mean plasma FT4 of prenatal treated rats was respectively 23.80 ± 1.94 pM and 16.88 ± 3.63 pM respectively at 60 and 100 days of age. No significant difference was observed when means were compared to those of controls. In postnatal treated rats, FT4 plasma level was significantly decreased 60 days after birth when compared to control rats (12.30 ± 1.15 pM vs. 5.66 ± 0.67 pM; p < 0.01) and no significant variations 100 days after birth (Table 2).

Plasma androgens concentrations in prenatal PTU treated group were not different compared with control group (Fig. 3). These concentrations were significantly lowers when treatment was provided after birth: 0.52 ± 0.03 ng/ml vs. 1.19 ± 0.17 ng/ml in 60-day-old rats and 0.96 ± 0.15 vs. 2.74 ± 0.41 ng/ml in 100-day-old ones (p < 0.01; Fig. 4).

Testicular morphology

No significant differences were obtained in tubule diameter and morphology of testis in prenatal PTU treated rats when compared with their respective controls contrary to postnatal PTU treated 60-day-old rats in which mean diameter tubule was significantly decreased and spermatogenesis delayed. In fact, while tubules in control rats contained spermatozoas, PTU treated rats showed tubules with few elongated spermatids (Table 1, plates 1 and 2).

Table 1. Testis weight and diameter of seminiferous tubules in control and PTU treated rats. Treated vs. control rats: *p<0.05.

<table>
<thead>
<tr>
<th>Ages</th>
<th>Testis weight (g)</th>
<th>Diameter of seminiferous tubules (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>PTU</td>
</tr>
<tr>
<td>60 dpp</td>
<td>1.242 ± 0.017 (n = 4)</td>
<td>1.170 ± 0.018* (n = 4)</td>
</tr>
<tr>
<td>100 dpp</td>
<td>1.295 ± 0.024 (n = 8)</td>
<td>1.242 ± 0.013 (n = 8)</td>
</tr>
</tbody>
</table>

Table 2. Plasma FT4 and FT3 in control and PTU treated rats. Treated vs. control rats: *p<0.05, **p<0.01, ***p<0.001.

<table>
<thead>
<tr>
<th>Ages</th>
<th>FT4 (pM)</th>
<th>FT3 (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>PTU</td>
</tr>
<tr>
<td>60 dpp</td>
<td>24.33 ± 2.26 (n = 4)</td>
<td>23.80 ± 1.94 (n = 4)</td>
</tr>
<tr>
<td>100 dpp</td>
<td>20.00 ± 3.14 (n = 4)</td>
<td>16.88 ± 3.63 (n = 4)</td>
</tr>
</tbody>
</table>

Fig. 5. Testis sections in control and PTU 60-day-old-rats. a1-a2: Control, b1-b2: PTU prenatal treated rats, c1-c2: PTU postnatal treated rats. ep: seminiferous epithelium, L: lumen, lb: basal lam. Ly: Leydig cell, Sn: Sertoli cell nucleus, Spl: primary spermatocyte, Spg: spermatogonia, Spl: elongate spermatid, Spz: spermatozoa, Vs: blood vessel, 1-4-5-8-7: spermatogenesis stages. a1-b1-c1: Gx200, a2-b2-c2: Gx630.
Fig. 2. Testis sections in control and PTU 100-day-old-rats. a1-a2: Control, b1-b2: PTU prenatal treated rats, c1-c2: PTU postnatal treated rats. L: lumen, Ly: Leydig cell, Sd: Spermatid, SpI: primary spermatocyte, Spg: spermatogonia, Sr: Sertoli cell, Sptr: round spermatid, Spz: spermatozoa, Ti: interstitial tissue, Vs: blood vessel. a1-a2-c1: Gx240, a2-b2-c2: Gx480.
Discussion

The PTU treatment induced a decrease in thyroid hormones levels by inhibiting oxidation of iodide to oxidized iodine and its binding to tyrosine moieties in thyroglobulin: a central step in thyroid hormone synthesis catalysed by the thyroperoxidase and decreasing D1 deiodinase’s activity and peripheral transformation of T4 [35]. This drug is known to be able to cross the placenta [25] and to be present in milk of lactating mothers [3,16] inducing an hypothyroidy in fetus and newborns. Our treated animals were hypothyroids like it was demonstrated by decreased FT4 and/or FT3 plasma levels at 60 dpp and like it is reported [17, 34]. The results of this study demonstrate a significant weight loss at birth and adulthood in prenatal treated rats and over all the experiment for postnatal treated ones. No significant difference was observed in the body weight of fetuses taken from 0.025% MMI treated mothers by Francavilla et al [17] while similar variations have been observed after postnatal thyroidectomy [1,4], 0.1% [1, 30], 0.05% [17] or 0.025% MMI treatment [31] and 0.1% PTU administration [12-14,19]. This effect on body growing was foreseen since numerous data demonstrate that thyroid hormone is strongly involved in the regulation of body growth during fetal and postnatal periods through their complex metabolic effects, stimulation of growth factors production and secretion and action of GH and IGF-1 [7,37].

Adult rats made hypothyroid during fetal period did not show any morphological differences when compared with control rats while postnatal transient hypothyroidism resulted in delayed maturation of testes. These results complete those of Francavilla for fetuses [17] and agree with those obtained during prepubertal and pubertal periods [1,17,22,30-31,33-34,39] and adulthood [12-14,18,19] after postnatal induced hypothyroidism.

Early induced hypothyroidism slows the transition from mitogenic to differentiated state of Sertoli cells since it is associated with a marked delay in Sertoli cell development [15] resulting in a dramatic impairment of protein metabolism and level of specific biochemical markers [30] and consequently a significant decrease in the number of germ cells per tubule during pubertal period [17,34] supported by the presence of active forms of thyroid hormone receptors α in testes during postnatal period [6,8,20,21]. The reduced androgens levels in postnatal PTU treated rats, in agreement with results obtained in thyroidectomized rats [1,4] and animals made hypothyroid during different periods [23,24,38] can be explained by lower serum levels of LH [17,38], reduced number of LH receptors per Leydig cell [18,38] and a delay in the onset of mesenchymal precursor cells differentiation into Leydig progenitor cells and newly formed adult Leydig cells [26,36]. The enhanced gonadal function in adulthood after transient hypothyroidism seems to be dependent on activity of enhanced Sertoli cells number in spite of the androgens essential role for the maintenance of spermatogenesis [5, 32]. In conclusion, this study demonstrates that neonatal hypothyroidism results in delayed maturation of the testis and reduced plasma androgens levels while prenatal thyroid hormone deficiency remains without effect on testis development.

References

Wong CC, Dohler KD, Muhlen AVZ. Effects of tri-iodothyronine, thyroxine and isopropyl-l-iodothyronine on thyroid stimulating hormone in serum and pituitary gland and on pituitary concentrations of prolactin, growth hormone, lutineizing hormone and follicle-stimulating hormone in hypothyroid rats. *J Endocrinol*. 1980;87:255-264.